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ABSTRACT

- This report deals With the calculation of unsteady lam-

nar boundary layers over arbitrary cylinders in an incompres-

sible flow. The calculation procedure is based on an improved

integral solution to the governing unsteady boundary-layer

equations. The essential feature of this improved solution

is to treat the usual integral solution as a first approxima-

tion, which is then used to linearize the governing equation

in such a way that improved unsteady velocity profiles in the

boundary layer are readily obtained. The integral solution

is first described in detail, based on two assumed types of

profiles, one being the well-known Pohihausen'S fourth-degree

polnomial, and the other, an exponential function containing

one arbitrary parameter. The basis of the improvement tech-

nique is then presented. Also introduced is a simple and

convenient error criterion which is capable of indicating,

without the knowledge of an exact solution, whether the

improved solution is actually more accurate than the basic

integral solution. Six numerical examples are then described

to demonstrate the application of the improved integral solu-

tion and also to illustrate the use of the error criterion.

Finally, it is concluded on the basis of the numerical re

suits that in a general unsteady problem accurate results can

be obtained by using the improved integral solution based on

r velocity polynomials within its whole range of validity, and

that, outside of this rannge, the integral solution, based on

exponential function, should be used with or without the im-

I
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provefueftt, depending on the relative magnitudes of~ the res-

pecotive error quantities.
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NOMENCLATURE

A

B (1AC (*~*B (U / 2) (6 t / <)*

Of local skin-friction coefficient, tw/(1/2puo )

Farbitrary function Introduced in Equation (21)

FiF 2 ,P3  universal functions defined in Equations (8)

f dimensionless stream function in Equation (39)

G form parameter in the exponential profile

g function of t*

H ratio of displacement to momentum thicknesses

J error criterion

K universal function defined in Equations (8)

L characteristic length of cylinder

Pfunction defined I Equation (29)

-l function defined in Equation (30)

R Reynolds number, UoL/V

t time variable



WD6-

t ut/,

uJOv velocity components in the xi- and y-- directions,

respectively

uo reference velocity

x distance coordinate along cylinder surface measured

from forward stagnation point or from leading edge

* x/L

y distance coordinate normal to cylinder surface

measured from surface

y y/L

a unsteadiness parameter

A- [(2H/2/2 (2/4 k*

6 a b oundary-layer thickniess

62 momentum thickness

e ~error quantity defined in Equation (5



iy/6

T.Y(U./vx) 1/2

~ t mor- parameter in the polyniomial profile

IL dynamic viscosity

v kinemiatic viscosity

function defined in Equations()

p density

Irw wall shear stress

function of X*

Subscripts:

i~a grid points in Fig. 1

0 -initial condition

0 basic integral solution

w surface condition

* tree-stream condition

I region O,<nN l

IIregion 1-4,TN
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Superscript:

Derivatives with respect to the independent

variable

INTRODUCTION

The two dimensional incompressible laminar boundary-

layer theory for steady flows around cylinders is now well

established in the literaturei It is unfortunate, however,

that the corresponding theory for unsteady flows is much

less advanced, -even though it is generally kn Own that un-

steady flow is physically more natural than flow under

steady conditions, and that considerable physical insight

to steady-flow behavior may be gained by Studying unsteady

boundary layers concerning coupled effects of vorticity

diffusion away from the cylinder and fluid convection along

the cylinder surface. The main difficulty is evidently the

inclusion of the time variable in the governing laminar

boundary-layer equations. Nevertheless, many significant

investigations on unsteady laminar boundary layers have

appeared in the literature, especially in recent years. A

concise survey on this subject has recently been given by

Stewartson [11 1 Briefly, moot published studies on unsteady

laminar boundary layers may be grouped into six major areas.

The well-known classical Rayleigh problem has now been ex-

tended to other infinite plate problems with more general

boundary conditions [2- . Another area of study centers

!Numbers in brackets refer to References at the end of this
report,
2No attempt is here made to quote all References.
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on the prediction of the instant of onset of laminar separa-

tion for unsteady flow starting from rest, as undertaken by

early workers in this field [6]. A third area of investiga-

tion concerns with exact solutions and possible exact solu-

tions to the governing differential equations for a number

of specific unsteady cases 7-l. Furthermore, the leading-

edge problem of unsteady flow over a semi-infinite plate has

received much attention ri2-iig. Also, very recently the

effect of free-stream oscillation on laminar boundary~iayer

behavior has been studied in great detail by many investi-

gators l-5 221 The last area of investigation deals with

general unsteady laminar boundary layers over arbitrary

cylinders [23-25].

In a recent Study of hydrodynamic stability of unsteady

laminar boundary layers over arbitrary cylinders, it has

become apparent that, similar to the corresponding steady-

flow problem, the stability characteristic would depend

strongly on the second profile derivatives of the unsteady

velocity profiles in the boundary layers, and consequently,

accurate determination of these profile derivatives becomes

necessary, For arbitrary cylinders and arbitrary free-

stream unsteadiness, only approximate solutions are avail-

able in the literature. Both Schuh [ and Yang [2:5 have

developed one-parameter integral solutions to this general

problem with the essential difference in the chosen profiles,

with Schuh [2 utilizing a combination of Hartree's profiles

for steady wedge flows and Fohlhausen's fourth-degree poly-
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nomials, and Yang [25], profiles derived from exact simi-

larity solutions for unsteady stagnation flows [9]. Even

though these integral solutions do yield satisfactory over-

all unsteady laminar boundary-layer behaviors, there is

considerable doubt that these approximate solutions would

generally give second profile derivatives accurate enough

for stability calculations, as this is a well Itnown fact

in the steady-flow theory.

This weakness of the integral solution, at least for

steady compressible or incompressible flows, can be corrected

to a very significant extent by an improvement technique

developed recently [26,27]. Since the underlying idea of

this technique applies equally well to the general unsteady

laminar boundary-layer problem, there is good indication

that it may be directly extended to the present problem to

obtain improved unsteady Velocity profiles. However, in

view of the complexity introduced by the added time variable,

such expectation can only be ascertained by detailed analysis

of the unsteady problem and comparison of calculated results

with known accurate solutions In the literature. The primary

purpose of this report -is to present such an analysis and the

corresponding results, and in addition, it will also be shown

that the general validity of this improved integral solution

may be readi.ly determined by an error criterion 271].
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FORM.UATION AND INTEGRAL SOLUTION

When an arbitrary two-dimensional cylinder moves unsteadi-

ly in an incompressible stagnant fluid, unsteady laminar boundary

layer develops on the cylinder surface. In the incompressible-

flow theory, this problem if exactly equivalent to one of the

same fluid flowing over the stationary cylinder with the same

unsteady velocity. Thus, with the coordinate system fixed on

the cylinder, the well-known laminar boundary-layer equations

may be written as follows:

au au u au' au~ 6Ru
- + U + V- f - + u() +at ax~ ay at ax V- 1

C- 6V0 a
ax ay

where x is the coordinate along the cylinder surface measured

from the forward stagnation point or the leading edge, y

the cQQrdinate normal to the cylinder measured from the sur-

face, u and v, velocity components in the x- and y-
directions, respectively, t the t ime var~able, v the kinematic

viscosity, and the subsCri pt g indicates conditions in the

free stream. The initial condition generally depends on the

specific problem, while the boundary conditions may be written

as

y 0 U V 3 0

(3)
y--U U- u. (x,t)
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For arbitrary, but prescribed variations of u.(x,t), integral

solutions based on somewhat different assumed velocity pro-

files have been presented by Schuh 24] and Yang E25. The

present analysis follows essentially the latter, except for

some details, as will be shown later in the report. When the

momentum equation (1), after eliminating v according to (2),

is integrated across the boundary layer, the following well-

known integral equation results:

622 H a 62 (H62) 62 2
+ ( + U00 --

V ude at V atVx

22w62
+ (2 + H) 2-- __o "i. (4)

V a - = A O

where 62 is the usual momentum thickness, H the ratio of

displacement to momentum thicknesses, rw the wall shear

stress, and P the Viscosity. Now if we assume that the un-

steady velocity can be represented by a one-parameter family

of curves, i.e.

U U

where 1= y/6, x = x(6,u ), and 6 is an unsteady boundary-

layer thickness, Equation (4) becomes a first-order partial

differential equation for the unknown 6(x,t). In order

to facilitate the solution to this equation, it may be con-

veniently cast in a simpler dimensionless form as follows [25]-:



U + F A= +L' +(C -A + j (61x t

where

ax U at

L L u-- u

and u0  is a reference Velocity,, and L) a characteristic

length of the cylinder. Furthermnore, universal functions

K, Fl, F2  and F3  are pure functions of the form parameter

X, which may be written as

62 dH d%
K t (a---) X PF rH +2 M-

6 1dx dK

2- m I.u6 3 1

and in addition, H and (62/6) are also universal functions

of the same parameter X. provided that X. is specificall

defined as
62

~ -~ (9)
V

which obviously reduese to the Pohihausen's form parameter

for steady flows. it now becomes clear that even though X

-i explicitly written as the uilcnQwn in Equation (6), the

form parameter X. is actually the unkon to be soughti
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view of the unique relation (8) between K and X, once the

velocity profile (5) is assumed.

Before solutions to Equation (6) can be attempted, it is

necessary first to introduce specific profiles in the form

of Equation (5) and to determine the corresponding universal

functions. As already pointed out previously, Schuh's

analysis [241 utilizes both the rohlhausen"s fourth-degree

velocity polynomial (for K(O) and Hartree's profiles for

steady wedge flows (for K>O), and Yang [251 has based his

choice on the exact profiles for unsteady stagnation "hyper-

bolic time-variation" flows T9]. The obvious weakness in

Schuh'S choice is that the resulting universal functions are

discontinuous at K = O, and this point of discontinuity is

expected to occur quite frequently in any general unsteady-

flow problem. In addition, the Hartree's wedge-fow profiles,

as well as the corresponding universal functions, are only

known in tabulated forms, and hence cannot be manipulated

readily. Yang's profiles, though continuous throughout the

entire region of K, evidently suffer the same difficulty.

However, since the present improved integral solution, as

will be described in the next section, utilizes the integral

solution as a first approximation, the velocity profiles and

the associated universal functions from the integral solution

must be manipulated. Consequently, all these available un-

steady profiles are not suitable for the present use. In

the present study, two distinctly different profiles have

been considered, One is still the Pohlhausen's fourth-degree
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polynomial, which, however, is allowed to be valid in the

range i2<X + 12, with the lower limit corresponding to

laminar separation. For X>12, the Velocity polynomial be-

comes non-sensible, and hence is to be replaced by an ex-

ponential profile. This discontinuity is not expected to be

too serious in actual applications, since it only occurs in

a region of large Values of j, corresponding to very large

acceleration in the free stream. Now the details of these

two assumed profiles are separately described.

The Pohihausen's fourth degree polynomial for the velocity

profile is well 1nown, and may be written as

u (2-W 212+ 113) +- j): o(10)
6i (10)

u*=1 1 i

from which universal functions in (8) can be readily deter-

mined, resulting in

37 X x2 62 37 X X2

K = - - - ---- ) X -- -- - -
35 9-45 9072 6 315 945 9072

3 X

10 1 20 X 37 X >2

H = +
37 X - _ 6 315 945 9072 (-. .

315 945 9072

S37 X 13X 2 X3
- -- " - ) + .. + ... .- -

60 315 945 9072 1575 113400 272160
F1  H+- -

37 X 37 X 5X2
( -- - )( - - _

315 945 9072 315 315 9072

37 X X2.  2 X2
_ 3 2 )0 2 W5- +-)
35 95 9072 15 120



Outside the region of validity of the above poiynomial,

Equation (10) is to be replaced by an exponential function,

which has been utilized in both steady- and unsteady-flow

cases [28,29,3] with high degree of success especially in

the unsteady-flow problems. it is in the following form:

*  (l(12)

where T y/6 and the form parameter 0 plays the same

role as X in the Pohihausen's polynomial. it should be

emphasized here that the boundary-layer thickness 6 in

Equation (12) has no relation whatever to that in Equation

(10). in addition, physically sensible profiles are only

obtainable for negative G values, with 0 = l for laminar

separation. it is also seen that boundary conditions at in-

finity are automatically satisfied, and the relationship be-

tween G and 6 can be easily obtained from evaluating the

momentum equation (1) at the wall, i.e.

62
1 + 2G= - (13)

V

Now once the profile is Iknown, the corresponding universal

functions may again be determined explicitly. They are shown

as follows:
1 Q 02 621 G a2-(I + 2G) (- -- -- - ) - *-- "----
2 '2 2 6 2 2 4

4(1 -a) 1 2
H= - F2  -(1 + )(2 -2a- 2 -) (!4)

2 2 0-0

_1+5 F3 G-20-)
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Now solution to the unsteady integral equation is con-

sidered. Equation (6) is a linear first-order partial dif-

ferential equation, the most general solution of which is by

the method of characteristics. However, this method yields
exact solutions to Equation (6) only i those cases where

two integrable equations can be obtained from the correspond-

ing characteristic equations. For general unsteady free-

stream velocity distribution, other means of solution must

be used instead. In view of the above, problems of special

interest may be grouped into the following classes, relative

to different geometry and methods of solution:

1. Stanation Flowwith Free-St rea-- Veoc -tyVaryg Arbitraril

with Time

For this class of problems, the free-stream velocity

distribution may be written as

M- = [x*g(t*)] .x 0

where g is an arbitrary, but continuously differentiable

function of time. With *, A and B given by pre functions

of t* and C 0, Equation (6) reduces to

dKr

7t F, IF+ K(IiB-A)J

which may be conveniently solved numerically for the unknown

X or G, depending on the profiles chosen, in terms of cer-

tain initial condition. For instance, if g(O) = 1, corres-

ponding to initially steady motion, then X(O) and 0(O) can

be determined from steady-flow theory.



18 -

2. Plow over-anInfinite- Plate withFree-Stream Velocity

VArying.-Abitrarily-with Time

With " = g(t*) and all derivatives with respect to

x* neglected, it may be readily shown that Equation (6)

now assumes the following form:

dK
= - F3 + BIH (16)

where both and B are now puze functions of t*6 The

above equation may again be numerically integrated in terms

of any specific initial condition depending on the physical

problem under consideration, resulting in either x(t*) or

G(t*). it may be pertinent to mention here that the corres-

ponding problem of unsteady flow over a semi-infinite plate

presents some difficulty regarding its solution. It must be

solved in the same manner as a general problem of an arbitrary

cylinder in an arbitrarily unsteady flow, as will be described

later. One exception is the case of a semi.-nfinite plate

moving from rest with a constant acceleration. The corres-

ponding integral equation (6) has a similarity solution
satisfyin the following ordinary equation 24,25]

dK 2F2 -31M)

dP 1 -2PF

where P = x*/(iit*), which is subjected to the boundary con-

ditions K(O) = 0 and K(gp) = Ko, where the constant Ko

is determined from

-3KH(K0) 2F2 (Ko) (18)
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Since only one boundary condition is necessary, solution to

Rquation (17) is obtained by matching the two solutions sat

isfying the two boundary conditions at a proper value of P.

Other details of this problem will be shOwn in a later see-

tion. Another exception is for flow over a semi-infinite

plate with step-change in free-rstream velocity. SiLnce for

this problem K is identically Zero, all universal functions

become constants, and Equation (6) in this limit reduces to

u + H. 2V 2  (19)

where Z* Zuo/L. This equation may be conveniently solved

by the method of characteristics. The corresponding char-

acteristic equations are then given by

dx* dt* dZ*
- - (20)
u_ H 2F2

from which two integrable equations may be readily obtained.

After eliminating the two arbitrary constants of integration,

we obtain the general solution

Z 2F2 7( u
Z - Fx* - )t (21)

H H

where the arbitrary function F is determined from the ini-

tial and boundary conditions. For a flow starting from rest,

the conditions Z*(x*,O) - 0 and Z*(O,t*l = 0 must all be

satisfied. Hence Equation (21) becomes

2F2 H2Z _ t 0o11t x (22a)
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where Equation (22a) indicates the transient behavior, while

Equation (22b), the steadyastate solution. When the flow

changes from an originally steady-state condition, we have

accordingly Z*(x*,O) = Z (x) d Z*(O,t*) 0. A simi-

lar analysis yields

2P- H Hz" + ti
Loci Coi

(23)
S2Fg H-- t . -'

U'6 Uto

where ui is the initial steady free-stream velocity, which

may be taken as unity without loss of generality.

3. ArbitrariiyUjnsteady Flow over-Arbitrary-Cylinders

The validity of the method of characteristics as applied

to this general problem has been implicitly assumed by Schuh

F:2-4]. However, limitations to this method were not pointed

out, nor was any example illustrating this application to a

general unsteady problem given. Yang :[25] later has proposed

a step-by-step calculation procedure, also based on the method

of characteristics, to this general problem. Unfortunately,

a close examination of this procedure reveals that it yields

accurate results only in cases where the quantity K/---/-*

is a weak function of t. In the present study, a new cal-

culation procedure is introduced, which has the capability of

obtaining numerlcal solution to Equation (6) as accurately

as desred. This procedure is based on a lumped approximtion

of the variation of K with respect to x If we now con-
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Sider the grid system in the x* t plane as shown in Fig.

1, it is seen that the derivative Wa/tx* at any point may

be conveniently approximated by

()~~In _j i+' ~, 1(4)

t jAt*

which involves an error of the order of (Ax*) 2 . The integral

equation (6) may no q be written as

--- -- F + K C - - A +)IM)
6t F1; Pi

Por a given problem, some initial condition K(X*,O) must

be known. For a flow starting from rest, K(X*,O) f K,

which :ust Se determined from a limiting process similar to

that of obtaining Equation (18) [25]. When the flow is ini-
tially steady, K(x*,O) mY then be evaluated from the steady-

flow theory. Before solution to Equation (25) is considered,

it is first necessary to obtain K(Q,t*). For a blunt-nosed

cylinder, K(Ot*) is obtained by directly integrating Equa-

tion (25) with u 0, which is evidently identical to Equa-

tion (15). When the cylinder has a sharp leading edge,

K(O,t*) becomes identically zero. Once K(x*,O) and

K(O,t*) are known, solution to Equation (25) may then pro--

ceed as follows3: Since at t* = 0 the derivative aK

is known exactly, there is no need to evaluate this quantty

from Equation (24). From the given unsteady free-stream

3In actual applications, it is desirable to treat either X
or G as the dependent variable, instead of K, in view of
the fact that all universal functions are explicit functions
of X or G.
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velocity distribution, quantities such as A, B, C and

u0 may then be evaluated at this instant. Consequently,

now the rightehand side of Equation (25) can be determined

accordingly for all points along the x* axis (Fig. 1).

Then one step of numerical integration with respect to t*

at each of these points immediately yields K(x*,At*). In

this regard, it has been found that the usual Runge-Kutta

integration routine, which is accurate to the order of (At*) 4,

is very satisfactory Together with the known value of

K(0,At*), derivatives (aK/6x*) at t* = At* may now be

evaluated for all points along the x* -axis according to

(24). This process is then repeated for successive time in-

stants until a desired time elapse is covered. it is noted

that this Step-by-step calculation procedure has one advantage

over that of pure finite-difference numerical approximations

in both x* and t*, and that is that here the question of

stability of the numerical solution never arises. Furthermore,

the present procedure can be conceivably improved In its

accuracy by using a higher-order differentiation formula than

that in Equation (24).

Once the parameter K becomes a known function of x*

and t , the corresponding form parameter X or G can be

evaluated, yielding 8 6(x*,t*). Equation (I0) or (12)

then immediately gives the unsteady velocity profiles. Thus,

the integral solution may now be considered as complete.

I
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AN IMPROVED INTEGRAL SOLUION AND A RELATED ERROR CRITERION

As generally recognized in the application of Kaman-

Pohlhausen's integral procedure, there are two essential

weaknesses which give rise to the inaccuracy of the approxi-

mate s olution. One is that the governing partial differen-

tial equation is only satisfied in the mean, and the other,

that the choice Of assumed profiles is entirely arbitrary,

and the resulting accuracies of different types of profiles

could be different by significant amounts. in the laminar

boundary-layer theory, most earlier improvements for general

problems have been based either on the choice of novel pro

files or on the use of additional integral equations, or some-

times known as moment equations. Unfortunately, none of these

improvements has general validity to arbitrary problems. This

has led the present writer to develop an essentially different

improvement technique for the general laminar boundary-layer

problem p261 in an attempt to correct sign!ficantly the

aforementioned weaknesses of the basic integral solution.

This technique basically utilizes the integral solution as a

first approximation, which, when substituted into the govern-
Ing differential equation, linearizes the equation, which may

then be readily solved for the improved profiles in closed

forms. in view of its apparent success, this technique has

since been extended to other physical problems [30.,31.

Very recently, it has been further improved in a minor detail

in that now the boundary condition at infinity is exactly

satisfied, and in addition a simple error criterion is in-

troduced such that validity of the improvement can be readily
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determined without knowledge of the exact Solution [27].

As mentioned previously, this improvement technique has only

so far been developed for a parabolic-type of partial differ-

ential equations in two independent variables. its extension

to equations with three independent variables raises some

uncertainties. The primary purpose of this section is to

present the detailed analysis of this extension to the general

unsteady boundarymlayer problem in two-dlmensional incompres-

sible flow. To simplify the presentation, the following will

be described only for the integral solution based on Pohl.

hausen's velocity polynomial. However, the formulation of

the improved procedure may be easily extended to cases where

exponential profiles (12) are used. In fact, it is only

necessary to replace the form parameter % by the quantity

(I + 2G) in view of Equation (13) and the usual definition

of X. Neverthiess, significant differences will be pointed

out, whenever desirable.

From the basic integral solution as described previously,

both X and 5 become known functions of x* and t*. In

order to facilitate the linearization of the governing differ-

ential equations by introducing the integral solution, it is

now desirable to transform these equations from the (xjyt)

coordinate system to the (x.I.t*) system. This transforma-

tion is governed by



1~ a6 -6

= ~ - + 4il-.

6 6 6 1 1- u

ia"6- + U

at at a% 6 at1 aT (6)*

W-= - -w.

ay6a!

The continuity equation (2) is first considered. solving for v

and transforming, we have

10~

l um la 6 x6 x bi !](7

Nquation (1)eleadsqafternsome mane ipulaons t frmd

Wih hehep ofEation=r(xrb* (28)

whertefolwigedniteo
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+----- +1 u

x at* ut aX* 2X ax 2USS J0

ax* ax au91

S * Au* * au + - aX .u
P2 (XIl~t*) - + - uO *

4 6at* 6t* a

+ r~x (3'0)

It is noted that this transformation is exact, and the

original non-linearities are now included in P and P2.

Consequently3 any solution that satisfies Equation (28)

is also a solution to the momentum equation (1). in the

present improvement technique, Equation (28) is first

linearized by evaluating P, and P2 on the basis of the

basic integral solution, and then integrated to give re-

fined profiles. The Justification comes from the fact that

P1  and P2  in Equations (29) and (30) only involve pro-

files and their Integrals, and hence the basic integral

solution is expected to describe these functions rather

accurately. The inaccuracy of the integral solution In

predicting profile derivatives, especially the second de-

rivatives, is now significantly reduced by satisfying the

governing differential equation (1) or (28) much more close-

ly. Therefore, Equation (28) my now be approximately

written as
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u** (1

where P1 0  and P2 0  are P1  and P2  evaluated from the

basic integral solution, respectively. The corresponding

boundary conditions are, for any X and t*

Sat , u 0 (3.2)

in general, solution to the linear equation (31) can be

expressed in closed form. However, in view of the composite

nature of the assumed profile (10) in the integral solution,

it is necessary to integrate Equation (31) separately in

the two regions 0414i and l.1-c, resulting in

dj-- rd ,z
1  +c f ee d

0 I 0

-~C 3 fe"~d ef d-' 2 fPojrJ e C

where the subscript I and II refer to the regions 0 T).<

and l471oo, respectively, and C1, C2, C3  and C4  are
constants of integration, and generally functions of X and

t * in order to eliminate these constants, two conditions

are required In addition to those In Equations (32), and

they are the matching conditions at 71 m 1, given by

U1~ u 1 U (34)

Since both P10 and P20  are continuous throughout the

region of q and Equations (34) insure the continuity of
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the profile and its first derivative, it is seen that the

new profile (33) is at least continuous in its Second de-

rivative in view of equation (31). it is pertinent here

to mention that, when the exponential profile (12) is

assumed in the basic integral solution, the question of

this matching in profiles does not arise, and it is only

necessary to extend the integrals in (33) to all values of

1 and evaluate the two constants of integration according

to conditions in (32).

As mentioned previously, many improvements of the basic

integral procedure have appeared in the literature over the

years. Almost without exception, these improvements are

justified by comparing results of both the improved solutions

and the basic integral solutions with known exact solutions

in certain specific cases. One major shortcoming of such

Justifications is that the accuracy of these improvements

is never too well ascertained in cases for which no exact

solutions are available. At least for steady~flow theory,

this shortcoming has now been corrected by using a simple
error criterion, as shown very recently by the present writer

[p72. Since there still exists some uncertainty as to whether

or not the present formulation of the improvement technique
does improve the result based on the -ntegra! solution

alone for the general unsteady-flow problem, the use of such

an error criterion is indeed extremely desirable. It is

now to be shown that the development of such an error criterion

for the present problem presents no added complexity as
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compared to that of the steady flow theory.

Since the transformation from Equation (1) to Equation

(28) is exact, it is clear that the accuracies of the in-

tegral solution with and without the present improvement

depend largely on how closely Equation (28) is approximated

in each case. Consequently, we may define an error quantity

e by

eX=,~* + P1  g -2 (5)

which is identically zero for an exact solution. For a given

assumed profile in the basic integral solution, deviations

from zero for i indicate levels of inaccuracy of the

approximate solution. In view of the fact that the error

quantity e defined in Equation (35) could have both positive

and negative values throughout the entire region of 11,

it is more convenient to consider a directly related error

quantity defined as follows:

(~d~ 2id m
J(.,t*) - Edir ~ i -~fd + fT) (36)

where R is characteristic Reynolds number, u oL/v. it is

noted that this definition of J differs only slightly from

that of the steady-flow theory [27] in the inclusion of the

boundary-layer thickness 6, and represents an average error

of the profile details. To determine the relative degrees

of accuracy of the integral solutions with and without the

present improvement, it is then only necessary to determine

and compare respective J values at different combinations
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of X and t . Evidently, smaller values of J correspond

to the more accurate profiles. in the actual determination of

e, Equation (35) may be used directly for the basic integral

solution. For the improvement, a -urther simplification is

possible. Since the improved profile satisfies Equation (31),

it may be readily shown that

e = (P1 - P1)-- + (P20  P2) (37)

Finally, it is particularly important to observe that compari-

sons can only be made Of J values based on the same type of

assumed profiles used in the basic integral solution. Differ-

ent types of initially assumed profiles, such as polynomials

and exponential functions, inevitably lead to 6's which have

entirely different meanings. Since these 6 quantities are

directly involved in the transformation which eventually leads

to Equation (35), meaningful comparisons of the corresponding

J values evidently cannot be expected.

The improved integral solution presented in this section

specifically deals with the improvement of the local unsteady

velocity profiles. In particular, the boundary layer thickness

function 6 remains the same as that given by the basic integral

solution. Obviously, this is done for the simple reason to

keep the calculations at a reasonable level. Nevertheless, it

is also conceivable that a Similar formulation as that used in

the steady-flow theory 1271- can be carried out to successively

approxipate solution to Equation (28) with an iteration scheme

based on the integral solution as the zeroth-order approxima-
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tion, with the view of possibly obtaining an exact solution.

However, in view of the greatly increased complexity of the

unsteady-flow problem, such an iteration solution does not

seem to be Justifiable.

NUMERICAL EXAMPLES

For the purpose of demonstrating the application of the

improved integraI solution, as well as illustrating the use of

the error criterion, several numerical examples have been cal-

culated in detail on an IBM 1620 digital computer. Whenever

possible, both assumed profiles, polynomial and exponential

function, are used in the basic integral solutions such that

range of validity of each of these profiles may be determined.

These examples and their results are now described individually.
EXAMPLE 1. StagnationHyperbolic Time-VariatiQn Flow

Similarity solutions to the unsteady two-dimensional in-

compressible boundary-layer equations have been considered by

many investigators [7-111. However, only a few detailed exact

velocity profiles are known. Yang has considered the

free-stream velocity variation given by

X*

..2. (38)
1 at* *

where % is an unsteadiness parameter, positive for accelera-

tior and negative for deceleration. This is known as the

stagnation hyperbolic time-variation flow for which a simi-

larity solution exists. The associated ordinary differential

equation assumes the following form:
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2

which is subjected to the boundary conditions

f(o) ,(o) 0 f,(co) = 1

where fI is the velocity profile u* and prime denotes de-

rivatives with respect to the similarity variable Ti defined
1/2

as y(u,/vx) / . Numerical solutions to Equation (39) have

also been given by Yang rgjj for a wide range of a from -3.0

to +1.6, The available exact Velocity profiles, and in parti-

cular the profile derivatives provide us with an excellent

opportunity to assess the validity of the present improved in-

tegral solutions based on both types of assumed profiles.

For this problem, it may be readily shown that A = 4/(!4a)',

B a/ /(i+a) and C m 0. Since K is now a constant, dependent

only on a, dK/dt* becomes identically zero. Hence EquatIon

(15) reduces to

(I + q)F3 + K(H -m4) 0 (40)

which immediately yields X(a) and G(q). When these are sub-

stituted in Equations (IO) and (12), respectively, velocity

profiles Uo* are obtained. This then completes the !ntegral

solution. For the improvement solution, functions P and

in Equations (29) and (30) now become
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______ + _Fm u*d0 (i

+( a ) + a :oi

?or the exponential functiOn, it is only necessary to replace

x by (I + 2G). These equations are not only used to evaluate

P, oand P20 from the integral solution, but also to deter-

mine Pi ard P2  from the improved profiles such that the

error quantity e, and eventually J may be calculated according

to Equations (37) and (36), respectively. Based on both fourth-

degree polynomial and the exponential function, the integral

solutions with and without the present improvement have been

obtained by detailed calculations for a values of 1.6, 1.0,

0, -1.0, -2.4 and -2.8. All corresponding J values have

also been evaluated, according to

S0 dT+ I d! (polynomial)

Table 1 shows some results of these calculations in terms of

the surface derivatives of the velocity profiles f"(0)

and the error quantities J/i *. Integral solutions based

on polynomials only exist up to an c-value of 0.2, while those

based on the exponential function does not seem to have an

upper limit. Lower limits for both assumed profiles obviously
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correspond to laminar separation. The results Shown in

Table 1 are very instructive in several respects. Even

though the error quantities only indicate an average for the

entire profiles and yet f"(o) values refer to only c'ne

specific value of T1, there is still a good correlation be-

tween the two, namely, lower values of the error quantity

do correspond to closer agreements with the exact solution.

Apparently, these surface profile derivatives are represen-

tative of other local profile values as far as accuracy is

concerned. For the case Of assumed velocity polynomial,

it is seen that the present improvement reduces the error

in the basic integral solution considerably, indicating a

corresponding increase in accuracy of the result. This de-

finitely suggests the validity of the -improved solution for

general use within the entire range of validity of the basic

integral solution based on Pohlhausenls velocity polynomials.
However, such a general conclusion cannot be made for the in-

tegral solution based on exponential profiles. For negative

values of 4, the present solution indeed represents improve

ment. However, when a becomes positive, J-values for the

present solution actually exceed that of the basic Integral

solution, indicating that no improvements are realized in

these cases. Consequently, the present solution should not

be used. It is emphasized here again that J-values for the

two assumed profiles, which are seen to be different by some

orders of maitude, bear no relation to one another, due t

entirely different meanings of 6. Therefore, the relative
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merits of integral solutions, with and without the present

improvement, can only be determined by comparison with the

corresponding exact solutions. in this regard, it is clearly

seen from Table 1 that within the range of validity of the

integral solution based on polynomial profiles, the degrees

of accuracy of the improved solution based on polynomials far

exceed that based on exponential function. All these observa-

tions are further substantiated in Figs. 2-7, incl., which

are plots of f'"( 1) based on various solutions calculated

for different a-values. These comparisons of f'( i1

which are directly related to the second profile derivatives,

are much more critical than that of f"(o), since it is gen-

erally known that by far the major portion of inaccuracy in

the basic integral solution occurs in the second profile de-

rivatives and furthermore, these comparisons are made over

the complete range of T11. There is, however, also an indi-

cation that the accuracy of the improved solution decreased

as laminar separation is approached.

On the basis of the above comparisons in the present

problem, which does cover a wide range of free-stream unsteadi-

ness, it is perhaps reasonable to suggest that in a general

unsteady problem the improved integral solution based on

fourth-degree velocity polynomials is to be used within its

entire range of validity, i.e. 12 %?-12. Outside th!s region

for X 12, the results of this problem suggests the use of the

basic integral solution with the assumed exponential profile.

However, as one of the subsequent examples will show, it is



-37

not always true that in this region the basic integral soiu-

tion is more accurate than the present solution. Consequently,

it is necessary in this region to evaluate both J-values as

to determine which is the more accurate. One obvious weaness

in the above reconmendation is the use of composite solution

when X does exceed 12. However, this is not considered to

be too serlous, since such xkvalues would correspond to ex-

tremely large accelerations in the free stream. Further

justification of this recommendation can be obtained in con-

sidering the follOwing examples.

EMPLE 2. he Rayleih Problem with StepgChae in ree-

This is the classical problem of an infinite plate moving

in a stationary incompressible fluid with a step-change in

its velocity. The solution is well known and is given by

= erf(y/ -), relative to the Coordinate system fixed on

the plate, where ert is the usual error function. Solution

to the integral equation in this case is elementary, and is

shown in the following:

6 2 ?F
2= (m) (42)

Vt H

K=O

The integral solution is then obtained by substituting the

above equation in the profile equation (10) and (12). The

corresponding error criterion is simply

Jo 4 2-

A"" * J (43)
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where [(2H/F) 2 (6g/6 The improved integral

Solution Ior this problem is equally elementary. Functions

and P2  in Equation (29) and (30) reduce to

2

P1  ne--.11 P- 0 (44)
1i0 P20 o

respectively. Solution to Equation (31), satisfying the

boundary conditions in (32), is simply u* = erf(TIV). How-

ever, since it can be shown readily that Ig defined as

y/Lfvt is related to 1, by 1 j = 2 , the solution now becomes

u = errt(O) (45)

which is obviously identically to the exact solution. Thus,

it is seen that for this problem, the improved procedure leads

to exact solution, regardless of the type of profiles used in

the integral solution. The calculated J-values, as well as

the surface profile derivatives, are shown in Table 2.

EXAMPLE 3. The Rayleigh Problem with Constant AcceleratiQn

This problem is similar to the previous one except that

the free-stream velocity undergoes constant acceleration from

rest. Exact solution to this problem is again known [6],

and is given by

u*2 112 2 + 2 1

u 1+lmmT2e - +T 2  erf (r2) (46)

The solution to the Integral equation (16) has been given by

Yang [25], and may be written as
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TABLE 2 - RESULTS FOR EXAMPLE 2

d-*

polynomial 1.095 3.4249
integral Solution

exponential -1 .n47 4.6340x10 2-

improved solution i. 1284 .0

Exact Solution 1.A284 0

222 F2 (Ko) (7

Vt -3 H(K0 )

where K.is a constant satisfying Equation (18). Since the

corresponding value of X exceeds +12, only the result

based on exponential function can be considered. Thus,

Equation (18) leads to a G-value Of o-1/13. The error criterion

for the integral solution is now

00

e 7 (48)

NQWf~rtheimproved -solution, Equations (29) and 3)rdc

respectively to

10 6 20 = -(uo* -1)(4

3

The integrals in the solution to Equation (31) have been

evaluated numerically, yielding the new profile u* = u*,(TI).

Finally; this may be transformed into the physical plane by
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= K0  /6;-)T

Since P based on the newly obtained profile is identical

to P1o' the error quantity now simply becomes (uo* u*)/3

in view of Equation (37), and the corresponding J-value has

also been determined from Equation (48). The comparison of

J-values and surface profile derivatives is shown in Table 3,

and that of the second profile derivatives, in Fig. 8e It

is seen that the present solution is much more accurate than

the basic integral solution, a result which is contrary to

that obtained in the first example. It is therefore clear

that in this region of application for X>12, it Is necessary

to compute the error quantities for both the integral solutions

With and without the present improvement, Such that the more

accurate result can be determined.

TABLE 3 - RESULTS FOR ,EXAMPLE 3

du* J

d11

Integral Solution (exponential) 2.3094 0.4459x!0-3

Present Solution 2.2662 0.7682xlO 4

Exact Solution 2.2568 0
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EXAMPLE 4. Pnteady Fl woeSemi-Ifinite Plate wit

Const-nt Acceleration from Rest

This represents one of the problems in which the leading

edge plays a very important role in the solutions. These

problems have been systematically studied in the literature

l22-"4]. in particular, this very problem is covered in the

series solutions of Cheng 113]1, and Chengnd Eiott [4],

Which are, however, only valid for flat plates and free-stream

velocity starting fProm rest. in this numerical example,

attention is to be placed only in the region close to the

leading edge, since it is in this region that the basic in-

tegral equation (6) for this problem reduces to Equation (17)

exactly, which is now to be solved in terms of the boundary
condition K(O) = O. The solution may be eXpressed n termS

of integrals, as follows:

0 2F2 0 2P2 - 3dk

which immediately yields either X * X(P) or 0 = G(F),

depending on the assumed profiles, which then leads to the

profile details according to the integral solution. For the

improved solution, functions P! ad P2 now become
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P1 = -(X - 2px') + ud! + XX' u*dn.2 2 fo x1*a (51)

respectively, where prime denotes derivatives with respect to

P. Equat ions (51) are explicitly written for the case where

velocity polynomials are considered. However, they are equally

valid for exponential functions, provided again that X is

replaced by (I + 20). When Equations (51) are evaluated

from the integral solution u o  and the following identities

are utilized:

1 9ppei  37 X-k 37 x 5X-- (F-M - - 1 A.- - --- __

315 945 9072 315 315 9072

2(l - 20)(! + 30)
.G(8 + 50 24P)

where prime again refers to derivatives with respect to P,

Equation (31) is then solved in terms of integrals which in

turn are evaluated numerically. This calculation has been

carried out for both profiles for a range of P in the

neighborhood of P = 0. The J-values for the basic integral

solutions can be readily evaluated from Equation (36). How-

ever, calculation of that of the corresponding improved solu-

tions gives rise to a slight complication which needs special

treatment. This is a characterlstic to all general problems

with non-similar profiles, as already pointed out by Yang [27],
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In order to evaluate the error quantity e from Equation

(37), it is necessary first to determine functions P1  and

P2 from the improved profiles. However, in view of Equations

(51), the distribution of 8u*/8P at all values of 1, must

be known. Even though it could possibly be evaluated by

numerical differentiation from improved profiles at various

P-values, such an evaluation would be extremely awkward, and

it is highly desirable to be able to determine this distribu-

tion at any particular value of P. This can be accomplished

by the following scheme. Differentiating Equation (31) with

respect to P yields

~20
()+ p () - - 0(2

aT2 6p aj ap CP C)P a!

which is subjected to the boundary conditions

6u* 6u
q= -- 0 -o0 (53)ap ap

Now Equation (52) may be solved in an identical way as that

for Equation (31), resulting in Cu*/6P. Thus, this determina-

tion is frozen at any P-value.

The calculated results for this problem are shown in

Figs. 9 and 10, together with the series solution of Cheng

L13], which is believed to be accurate in this problem, in

view of the nature of his solution. More specifically, Fig.

9 shows the variation of local skin-friction coefficient

cf I 1w/(1/2puoi2 with P and Fig. 10, the variation of the
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J-values. It is noted that all curves in Fig. 10 go through

j i 0 at P - 0, since there is no motion then and accord-

ingly, 6 = 0, yielding J = 0 in view of Equation (36).

These results again show the good correlation between the

calculated J-values and the relative accuracies of the integral

solutions with and without the present improvement. This

represents further evidence of the validity of the use of the

error criterion. Moreover, it is also seen that the improved

integral solution based on polynomials is much more accurate

than that based on exponential functions, Since in this

problem values of X are all under the limit of 12, this re-

sult agrees well with that of the first example.

EXAMPL 5.- Transient BE ndaryLaer DevelOpmen -on- a , Semi-t

Infinite Plate

This problem deals with the effect of step-wise change tn

free-stream velocity on the development of unsteady boundary

layer on a semi-infinite plate which is originally in steady

motion. The step-wise change may represent either accelera-

tion or deceleration. The integral solution to this problem,

based on the method of characteristics, has already been

presented prevlously, and is shown in Equation (23). Only

the transient solution is considered here, since the steady-

state solution has already been treated in the literature

[261. For this problem, functions P1  and P2  are given by

(6)2 r1 um
Pl =F ) K- - )"- - udT),

2 j u i u9 (54)

? w0



45

Detailed numerical calculations of the integral solutions

with and without the present improvement, based On both as-

sumed profiles, have been carried out for two-values of
' namely, 2.0 and 0.5, and several combinations of x*

and t** In addition, all pertinent Values of J have also

been determined, Since no exact solution is available to

this problem in the literature, no comparison can be made

and only some representative results are presented. Table

4 shows the calculated results for several specific combina-

tions of x* and t*, and some typical Velocity profiles are

described in Fig. 11 to 14, incl. These results again clearly

indicate the validity of the improved solution. Pinally, it

is to be noted that in a normal application to the present

problem, it is not necessary to Obtain the integral solutions

based on exponential functions, since here X is identically

zero, which is well within the range of validity of the in-

tegral solutions based on polynomials.

EXAMPLE 6. Unste-ady-Flow over a Circular Cylinder

This last example treats a general unsteady boundary-

layer problem of flow over a circular cylinder. Te free-
strew velocity distribution is written as

= x (55)

where

O(x*)= 3,6314x* - 2.1709x*3 - 1.5!44x 5

g(t*) t a. t* + t*2  t 0
-I *
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TABlLE 4 R-ESUTS FOR PROBLEM5

I I _______-- - - JO ______

G. 1149 0.1198 4.408:8 532
0.3

0.,3448 0.0775 3.-46,5 4.2i89;5 X 1

i 029 0,.2396 6.2350 7,5413 x io~
2.0 0-6

0. 6896 0.1 550 5.o01556062xi-

0.3448 0.3594 7.i6363 9.23,62 X 10 2
0.9

1.0G344 0.2 32,6 6.477.4296 X io1

10.4597 0. -1832 0.5475 8.i01525 x 10~

0.3 ~ 1.3792 0.2678 0.i6619 975 0

0.19 0.66 0.7743 1.13-88 x o3
0.5 0.6

2.7584 j:0.53-56 0.93,61 1.37 x i3

1.3792 0. 5497 0.9483 1.3947
0.9

4.1376 0.8,034 1.1464 1.6861 x 10 3

0.0982 0.1753 3.2546 x 1o0' 1.5309, x l0"

03 0.2945 1:0.113-4 2.6180 x 10-2 121

2.o. .19,64 0.30 4.6027 10 2.1650 x10-3

_____ 0589 0229 .704 i-2 1.7415 x 10"3

0.2945 0.5259 5.6372 x i10"2 2.6515 x 10o3
0.9

0.8836 0.3403 4.5345 x 10-2 2.1 329 x 10-3

0.3927 0.2681 1.0o840 x io 2 1.1325 x10-5

0.3 -1.1782 0.3919 1.3105 x 10-2  1.3692 x ia- 5

05 06 0.7855 0.5362 1.5330 x ioa -27 1.6017 x 16 ;
0. .- 2.3564 0.7838 1.8533 x 10-2 1.9363 x 10-5

09 1.1782 0.8044 1.8775 1lio2  1.966 x 10!)

3.5345 '1!.1756 2.2698 10Ao 2.3715 x10~



-47-

where ¢(x*) is the steady free-stream velocity distribution

over a circular cylinder as given by Heimenz L321. Even though

this variation is now known not to be too accurate, it, never-

theless, Serves the present purpose. The chosen time varia-

tion is one involving initially steady motion, then decelera-

tion, and finally followed by an acceleration. The general

calculation procedure described previously for a general un-

steady problem to obtain solution to the integral equation is

here used. All integrations have been carried out by the

usual fourth-order Runge-Kutta routine. The result of this

solution based on polynomial profiles only is shown in Pig. 15.

For this problem Equations (29) and (30) are used directly,

since no simplification is possible. When the integral solu-

tion u (X,)T) is substituted into Equations (33), improved

profile at any combination of x* and t* is easily obtained.

To calculate the error quantity of the improved Solution, it

is now necessary to first evaluate au*/aX and u*/at*

from the improved profile. This is again done by first difw-

ferentiating Equation (31) with respect to x and t*, and

then following the same scheme as that indicated in Equation

(52). Some results are shown in Table 5 and Fig. 16. Here

again the Improved accuracy in the present solution may be

noted.
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TABLE 5-RESULTS VoR PRoBLE--M 6

x 01

01.10000 1 0.20000 0.45949 0,1448'8

0.300 { - 0.100 0.33981 0.04810-

0. 20000 I 041000 0 0.38_70 0.04412

0. 10000 0.40000 0.43801 0.11147

06.20000 0.40000 j 0.3,6692 0.01324 -

0.3;0000 0.30000 j 0633221 0.04215

0.40000 0.20000 0.28828 0.09272

0.0000.40000 o.:26568 0.05756

0.50000 j 030000 0.22076 0.18338

0.50000 0.40000o 0.20654 0.12395
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CONCLUDING REMARKS

in this report an improved integral procedure, based on

two types of assumed profiles, is proposed to calculate the

behavior of unsteady laminar boundary layers over arbitrary

cylinders with arbitrarily prescribed unsteadiness in the

free stream Also introduced is a simple error criterion

by which the validity of the improved solution can be readily

determined. in view of results from the numerical examples,

this error criterion correlates extremely well with the in-

accuracy of the approximate solutions on the basis of comparing

results with that from the exact solutions. Furthermore, the

critical comparisons in the second profile derivatives from

the integral solutions with and without the present improve-

ment technique and from the exact solutions in the first four

numerical examples have definitely indicated the high degree

of accuracy attainable in the present solution. As mentioned

previously, such accuracy is necessary for hydrodynamic stab-

ility considerations. Consequently, the following recommenda-

tion has evolve -in the present study. For any general unsteady-

flow problem, the improved integral Solution based on the

fourth-degree polynomial as the assumed profiles in the basic

integral solution should be used within the entire range of

validity of this basic integral solution. High degree of

accuracy can be expected, except possibly in the immediate

neighborhood of the point of laminar separation. Outside of

this range, both integral solutions based on assumed expon-

ential functions should be utilized. The final solution here,

being either the basic integral solution or the improved solution,

is evidently the one with lower magnitude of the error quantity J.
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